
The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of

electrons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 266210

(http://iopscience.iop.org/0953-8984/19/26/266210)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 19:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 266210 (12pp) doi:10.1088/0953-8984/19/26/266210

The strong thermoelectric effect in nanocarbon
generated by the ballistic phonon drag of electrons

E D Eidelman1,2 and A Ya Vul’1

1 Ioffe Physico-Technical Institute of the Russian Academy of Sciences, Polytechnicheskaya 26,
St Petersburg, 194021, Russia
2 St Petersburg Chemical–Pharmaceutical Academy, Popova street 14, St Petersburg, 197376,
Russia

Received 31 January 2007, in final form 16 May 2007
Published 7 June 2007
Online at stacks.iop.org/JPhysCM/19/266210

Abstract
The thermoelectric power and thermoelectric figure of merit for carbon
nanostructure consisting of graphite-like (sp2) and diamond-like (sp3) regions
have been investigated. The probability of electron collisions with quasi-
ballistic phonons in sp2 regions has been analysed for the first time. We have
shown that the probability is not small. We have analysed the influence of
various factors on the process of the electron–ballistic phonon drag (the phonon
drag effect). The thermoelectric power and thermoelectric figure of merit under
conditions of ballistic transport were found to be substantially higher than those
in the cases of drag by thermalized phonons and of electron diffusion. The
thermoelectric figure of merit (Z T ) in the case of a ballistic phonon contribution
to the phonon drag of electrons should be 50 times that for chaotic phonons and
500 times that in the case of the diffusion process. In that case Z T should be a
record (Z T � 2–3).

1. Introduction

In recent years, the effect of nanoscaling on transport phenomena in solids, in particular on
thermoelectric phenomena, has become a subject of intense interest [1–5].

The interest centres at present on synthesis of new materials with the highest possible
value of the thermoelectric figure of merit Z , which could lead to use in refrigeration or power
generation [2]: Z = S2σ/κ . Here S is the thermoelectric power or the Seebeck coefficient, σ

is the electrical conductivity and κ is the thermal conductivity.
The higher the Z T product of a material (where T is the temperature in kelvins), the more

useful it may be for thermoelectric purposes. This is why one uses Z T as a dimensionless
quantity for characterization of thermoelectric materials.

Serious efforts were undertaken to increase Z either by selecting an appropriate
semiconductor for the thin layer and thickness of this layer [3, 4], or by growing a superlattice
from appropriately optimized materials [5]. In the latter case, a record high value of Z T = 2.31
at 300 K was reached for a Bi/EuTe superlattice.
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Particularly promising appears to be investigation of thermoelectric phenomena in carbon
nanostructures. Such nanoscale structures can support coexistence of sp2/sp3 hybridized
carbon. Coexistence of regions with radically different electrical and thermal properties within
such short distances is indeed a unique feature of these structures. Graphite-like regions
(sp2) represent essentially a semimetal with a high electrical conductivity but relatively low
thermal conductivity. Diamond-like regions (sp3) can be identified with a wide bandgap
semiconductor, actually a dielectric but with a high thermal conductivity. The corresponding
transport coefficients differ by many orders of magnitude.

The paper considers the ballistic phonon drag of electrons in an sp2 region a few nm in size
that borders a macroscopic sp3 region. We assumed that the interactions of phonons with one
another should be negligible in such nanostructures with characteristic dimensions of the order
of the phonon mean free path length. This means that phonons in the sp2 region propagate
ballistically.

It is assumed that the flux of ballistic phonons in the sp2 region is driven by a temperature
gradient, and that the reverse flux of phonons from the sp3 region is small. We believe that the
above-mentioned differences in thermal and electrical properties between the sp3 and the sp2

regions validate this model.
Transition from a graphite-like to a diamond-like crystal lattice can occur across a

thickness of as little as that of two graphene sheets [6, 7]; therefore, scattering and reflection of
long-wavelength phonons at the sp2/sp3 interface may be neglected. The wavelength of such
phonons is larger than the size of the transition region separating the sp3 from the sp2 phase,
and, therefore, a ballistic regime can be realized with long-wavelength phonons.

Thermal conduction is governed not by ballistic but rather by random processes involving
short-wavelength phonons. The possible effect of short-wavelength phonons on the long-
wavelength ones is taken into account by including macroscopic thermal conductivity in the
denominator of the figure of merit.

The contribution of the phonon flux from sp3 regions to electron drag by phonons in the
sp2 region is considered to be small and, thus, is disregarded.

The thermoelectric effect is driven, in a general case, by three processes, more specifically,
by diffusion, electron drag by random phonons, and electron drag by ballistic phonons.

The thermoelectric coefficient in the case of electron drag by phonons is known [8] to be
always larger than that for the process driven by diffusion. The mean electron displacement
by the phonon wind is larger with ballistic than with random phonons. It appears therefore
only natural to expect that the thermoelectric coefficient corresponding to the electron drag by
ballistic phonons should be the largest.

This means that the above structure made up of a nanosized sp2 region surrounded
by macroscopic sp3 regions should have a high thermoelectric power factor (thermopower)
because of the phonon drag of electrons, even at room temperature.

Randomly propagating phonon drag of electrons in metals has been known of for a long
time [8]. We are reporting here on the effect of quasi-ballistic phonon (QBP) drag of electrons;
by QBPs one understands phonons that interact only weakly with one another and the lattice,
in other words, that do not thermalize in the time required for their interaction with electrons.
We shall consider electron interaction with QBPs which is generated in carbon nanostructures
by a temperature difference, and calculate the thermoelectric power. We are going to show that
the QBP contribution to the phonon drag effect gives rise to a strong (102 times) increase of the
thermoelectric power or the Seebeck coefficient.

There are grounds for expecting that the Z T should increase correspondingly. We
will show that it is indeed true and that the value Z T � 1 can be reached when the
effect of ballistic phonon drag of electrons is realized. This result is of general interest
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Figure 1. Schematic diagram of the ballistic phonon drag of electrons. 1—hottest part of sp2

region. Distance 1–2 is the mean free path of a phonon of energy h̄ωq before collision with an
electron at point 2. 2—electron of energy εk absorbs a phonon; 2–3: displacement of the electron of
energy εk+q upon absorption of the phonon; 3—electron of energy εk+q emits a phonon of energy
h̄ωq ; 3–4 is displacement of the emitted phonon. The emitted phonons have displaced to the cold
sp3 region 4. Emitted phonons propagate randomly. 3–5: displacement of electron of energy εk

following emission of the phonon; 2–5: electron displacement by the ballistic phonon drag effect.

because it offers a new look at the potential of nanocarbon structures for thermoelectric power
generation.

The key issue in the analysis of the drag effect in a nanostructure is the interaction of
ballistic phonons with electrons.

We shall assume that if there is a temperature difference in a nanostructure, the generated
phonon flow has a wavelength distribution coinciding with that of the black body radiation. As
this has been recently demonstrated, this assumption is valid [9].

We are going to discuss, step by step, a qualitative model for the phonon drag of electrons
having an energy distribution coinciding with that of black body radiation, calculate the
probability of collision of such phonons with electrons, and estimate the thermoelectric figure
of merit. We shall always consider transformation of heat to electricity.

2. Qualitative model

Consider a carbon structure (figure 1) consisting of nanoregions of two types, with carbon
atoms in one of them (region 1) being sp2 and in the other (region 4), sp3 hybridized, i.e., a
structure made up of graphite- and diamond-like regions. We assume a situation in which the
surface of the sp2 regions is heated to a high temperature Th, while the diamond-like sp3 regions
retain a relatively low temperature Tc. Diamond-like regions act as specific coolers, i.e., they
remove heat from the graphite-like ones. A temperature difference forms between the sp2 and
sp3 regions, with a phonon flow setting in.

In figure 1, distance 1–2 corresponds to the mean free path of phonons of energy h̄ωq until
collision with an electron of energy εk at point 2. At this point, the electron absorbs a phonon.
On moving the distance 2–3 in the phonon drift direction, the electron with energy εk+q emits a
phonon of energy h̄ωq . The displacement 3–4 identifies transport of the emitted phonon to the
cold sp3 region 4, which is in thermal contact with the massive substrate. In the model under
study, the temperature of the substrate and, hence, that of the sp3 regions is assumed constant.

3
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That such a formulation of the problem is valid is substantiated by the thermal conductivity
ratio of the sp2 and sp3 regions: κsp3/κsp2 � 1, which ensures adequate heat removal from
diamond-like regions to the substrate. In the case of macroscopic sp2 and sp3 regions, i.e., of
the diamond and graphite, this ratio is 20 [10].

Phonons are emitted in random directions. On emitting a phonon at point 3, the electron
moves to region 5. Obviously, 2–5 is the distance through which a ballistic phonon drags the
electron. Thus, a phonon flow drags the electron gas in the graphite-like region and, in doing
this, generates a thermoelectric field.

The purpose of the present study is to calculate the efficiency of the drag process and the
thermoelectric power associated with the drag effect. We shall calculate the probability for
a QBP to collide with an electron, find the temperature dependence of the phonon relaxation
time, and show that the thermoelectric power of a graphite-like nanocluster exceeds by orders
of magnitude the known values of the thermoelectric power for graphite, which are ≈10–
20 μV K−1 for the region above room temperature.

The actual structure and design of the thermoelectric generator can be realized in various
ways.

3. Estimation of the parameters of the problem

Estimate first the phonon mean free path l in the sp2 region [11]. The estimate will be made for
temperatures Th ≈ 500 K, where the lattice vibration amplitude ξ becomes comparable to the
lattice constant a. As a rough approximation, one may use the classical relation Mω2ξ 2 ≈ kBT
for the vibration energy of a carbon atom of mass M = 12 amu, where kB is the Boltzmann
constant. Accepting ω ≈ c/a as a characteristic frequency, where c ≈ 5 × 104 m s−1 is the
sound velocity in the sp2 region, we arrive at

l ≈ Mc2a

kBT
� 10 nm. (1)

This means that in an sp2 region of size d � l the major contribution to the phonon
drag effect comes from QBPs. The main contribution to the drag is known to be due to
long-wavelength phonons [8]. It is through absorption of longitudinal acoustic phonons that
electron–phonon interaction occurs at temperatures above 10 K [11].

This ballistic propagation mode of phonons without collision with one another (l ≈ d)

permits one to calculate the phonon flux as black body radiation intensity (for phonons):

r = 4π h̄c2

λ5

[
exp

(
2π h̄c

λkBT

)
− 1

]−1

(2)

where λ is the wavelength and h̄ is the Planck constant.
Let us now determine the conditions in which electrons reside (m is the electronic mass).

In the sp2 region, the electron gas is degenerate, with the degeneracy temperature

h̄2

kBma2
≈ 105 K � Th. (3)

It appears appropriate to point out here that energy quantization in the sp2 region may
be neglected for both electrons and phonons, even if the drag occurs to the largest distance
λ ≈ ξ ≈ d .

Indeed, for phonons this condition can be written as (see section 23 in [12])

e2 E2d

mPhc24π2
� 2πch̄

d
(4)
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and a similar condition for electrons (section 22 in [12])

e2 E2d2

mPhc24π2
� h̄2π2

2md2
. (5)

Invoking now the uncertainty relation mph � h̄/cd to exclude the phonon mass, we find
that size quantization effects do not apply to phonons if

d �
√

2π
h̄c

eE
� 2 nm (6)

and to electrons if

d �
(

4π4h̄3c

me2 E2

)1/5

� 2 nm. (7)

We believe that phonon reflection at the sp2/sp3 interface should not change significantly
the above qualitative pattern of the phenomenon. This assumption finds justification in
the lattice similarity between these regions. In these conditions, phonons have a velocity
component directed opposite to the temperature gradient (figure 1).

4. Calculation of the probability of electron collision with a ballistic phonon

Let us turn now to estimating the probability for a degenerate electron gas to interact with
ballistic phonons (figure 1). As already pointed out in describing the model (see [13] or [14]),
an electron with energy εk absorbs a long-wavelength phonon of energy h̄ωq to become an
electron of energy εk+q , after which this electron is displaced (dragged) and emits subsequently
a phonon of energy h̄ωq . If phonons are thermalized (at the Debye temperature θ ), the resultant
electron displacement can be determined by subtracting from the displacement of the electron
that has absorbed a phonon the displacement of the same electron after it has emitted the
phonon, so that eventually the thermoelectric power scales as θ/T .

The situation is different when electrons are dragged by ballistic phonons. All the absorbed
phonons were propagating in the same direction, more specifically, against the temperature
gradient, while the phonons emitted by electrons are isotropic. One may therefore assume that,
on average, emission of phonons does not affect phonon drag due to the ballistic phonon flow.

This simplifies the calculation of the parameters of the drag of electrons by phonons;
indeed, one has only to find the probability of phonon scattering from electrons.

The scattering probability per unit time can be calculated by the standard quantum
mechanical procedure. This procedure is explained in [13] in the form most appropriate for
the problem of interest to us here. For the case of phonon absorption we have

Wq = 2π

h̄

∣∣〈�k + �q; Nq − 1
∣∣Ĥin

∣∣�k; Nq
〉∣∣2

δ(εk+q − εk − h̄ωq). (8)

Besides the widely used and already explained notation, we meet here Ĥin, a Hamiltonian
of electron interaction with longitudinal acoustic phonons, and Nq , the number of phonons with
wavevector �q.

The matrix element in equation (8) was calculated in [13] in the deformation potential
approximation

Wq = W (q)Nqδ(εk+q − εk − h̄ωq) (9)

where

W (q) = 4π

9N

C2q2

Mωq
. (10)
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We have introduced here N = d3/a3, the number of atoms in the sp2 region, and C , a
quantity with the dimension of energy which characterizes the intensity of electron interaction
with a phonon. To avoid overestimation of the interaction probability, one should take the
smallest possible value for C . The corresponding change of potential energy of an electron in
the cell corresponds to its displacement by the lattice constant a ∼= 1 Å, i.e.,

C � kee2

a
≈ h̄2

2ma2
(11)

(here ke is the electric constant, and e is the electronic charge) and C ∼= 1–10 eV.
The latter approximate equality in equation (11) is the consequence of the potential energy

of an electron being approximately equal to its kinetic energy. It is known also (see [11]
and [14]) that the drag is largely determined by phonons with energies of the order of the
energies of the electrons which absorb them. Therefore, εk ≈ h̄ωk . This yields the lower
estimate of the delta function

δ(εk+q − εk − h̄ωq) ≈ 1

h̄ωq
. (12)

Invoking the relation ωq = cq , which appears fairly obvious for acoustic phonons, we can
now recast conveniently the transition probability per unit time in the form

Wq ≈ 4πa3

d3

(
h̄2

2ma2

)2 1

Mc2h̄
Nq . (13)

Estimate now the number of phonons Nq . The main idea underlying this study suggests
that the flux of these phonons, i.e., phonons with the wavelength lying in the interval from λ to
λ + dλ, should be equal to the black body radiation intensity

r dλ

h̄ωq
. (14)

This is the number of phonons with wavelength λ that pass through unit area per unit time.
The area of the sp2 region is of the order of d2, and the time a phonon takes to cross this region
is of the order of d/c.

Because phonons involved in the drag have different wavelengths, to obtain the total
transition probability W per unit time we have to integrate equation (14) over all wavelengths of
phonons with energies of the order of Fermi energy or less, i.e., of phonons responsible for the
drag. Their wavelength is larger than 2π h̄c/εF. The Fermi energy for carbon structures is of the
order of 1 eV, and the corresponding wavelength ≈10−12 m, which is much less than the lattice
constant a. We may recall that it was the size a that entered the estimate of electron interaction
with phonons (11). Phonons with wavelength λ ≈ a should yield the major contribution to
the total transition probability. Therefore, integration of the flux (14), in conjunction with
equation (2), with a desired accuracy should be started not from the wavelength 2π h̄c/εF but
rather from λ = 0. This integration∫ ∞

0

r dλ

h̄ωq
=

∫ ∞

0

1

h̄

4π2h̄c2

2h̄c/λ

dλ

λ5

1

exp(2π h̄c/kBT λ) − 1
(15)

yields the probability for ballistic phonons to be absorbed by electrons of the degenerate gas
per unit time:

W = 4πa3

d3

(
h̄2

2ma2

)2 1

Mc2

2πc

h̄

(
kBT

2π h̄c

)3

�(3)ζ(3)
d

c
d2. (16)
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Here �(3) = 2 is the gamma function, and ζ(3) ≈ 1.2 is the Riemann zeta function. One
can readily verify that W > 1012 s−1.

Notice that consideration of the interaction of phonons with weakly bonded π electrons in
graphite [9] yielded a similar result.

The probability for colliding with an electron in the time it takes a phonon to cross an sp2

region, d/c, turns out to be more than 40%, which is quite high. This is why the thermoelectric
power turns out to be high.

5. Thermoelectric power generated by ballistic phonon drag of electrons

The thermoelectric power S in the region of random phonon motion is well known:

S = α
kB

e
; α =

(
Adif

kBT

εF
+ Adr

θ

T

)
(17)

(see [11] or [14]). The numerical coefficients Adif and Adr are of the order of 0.1–10. The
first term in equation (17) describes diffusion processes, and the second, the drag by randomly
propagating phonons.

Compare the contributions due to these processes.
It is known [11, 14] that the Debye temperature, which, by definition, is expressed through

the maximum phonon frequency ωm in a random process, is related to the Fermi energy (pF is
the Fermi momentum, and υF is the Fermi electron velocity) as

kBθ = h̄ωm ≈ h̄c

a
≈ pFc ≈ pFvF

(
m

M

)1/2

≈ εF

(
m

M

)1/2

. (18)

Substituting this estimate in equation (17) yields

αch =
(

Adif
T

θ

√
m

M
+ Adr

θ

T

)
. (19)

Hence it follows that for temperatures T = (2–5)102 K the drag process is dominant
throughout the temperature range covered: Adr � Adif(m/M)1/2, and θ/T ≈ T/θ .

Thus, it is the phonon drag of electrons rather than electron diffusion that dominates
thermoelectric power in the phonon thermalization region.

In the ballistic phonon propagation region, only phonon drag of electrons persists. As
already mentioned, the electron absorbs a phonon with a momentum directed against the
temperature gradient.

Exact calculation of the dimensionless coefficient α in the case of ballistic phonons would
not differ from that of chaotic phonons that has already been performed in [8] if one drops the
terms responsible for phonon drag by thermalized phonons in the reverse direction.

Thermalized phonons appear due to phonon–phonon scattering, which, by definition,
does not exist in the ballistic phonon drag. Thus, the difference between the drag due to
chaotic phonons and that produced by the ballistic ones consists in that there are phonons with
wavevectors directed opposite to the main phonon stream (see figure 2).

The length of the phonon drag of electrons in the direction opposite to the temperature
gradient should be subtracted from that directed along the temperature gradient (figure 2(b)).
In the case of ballistic phonons, there is no drag in the direction opposite to the temperature
gradient. This means that the effect of ballistic phonons on phonon drag should be substantially
higher than that produced by the chaotic population.

The thermoelectric power corresponding to this process can also be estimated using the
symmetry of the transport coefficients (see, e.g., [15]). By virtue of this symmetry, the

7
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Figure 2. Schematic diagram of the chaotic phonon drag of electrons. Th—hottest part. (a) Scheme
of the process explaining generation of the phonon moving to the hottest part. 1—initial phonons
from the hottest part, 2—phonons after the initial phonon’s interaction, 3—phonons after interaction
of secondary phonons. One of the three phonons moves to the hottest part. (b) Scheme of the chaotic
phonon drag effect. 1—shift of electron (with wavevector �k) due to phonon (wavevector �q) which
moves from the hottest part, 2—shift of electron (�k ′) due to phonon (�q ′) which moves to the hottest
part, phonon drag effect (‘drag’) is the difference of these shifts.

thermoelectric power relates not only to the field with the temperature gradient but also to
the heat released in the system with the electric field as well. Therefore, in a general case, one
can write

α = αbal = AbalCV /kB N0. (20)

Here Abal is a new coefficient of the same kind as the coefficients Adif and Adr introduced earlier
in equation (17), CV is the heat capacity of a unit volume of the medium releasing heat, and N0

is the number of electrons absorbing this amount of heat.
Estimate now the dimensionless thermoelectric power corresponding to this process,

α = αbal.
In an sp2 region, heat is released by the flow of quasi-ballistic phonons, i.e.,

CV = 16π2k4
BT 3

60h̄3c3
. (21)

This is the heat capacity of black body radiation. N0 in this region of volume d3 is
not larger than 20–30 electrons. In actual fact, this is an overestimation used so as not to

8
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overestimate the coefficient αbal. Then

αbal ≈
(

kBT d

h̄c

)3

. (22)

The numerical factor in equation (22) was assumed equal to unity.
Estimates yield for the thermoelectric power α ≈ αbal = 50–100 (S ∼=

(5–10)10−3 V K−1) for temperatures T = (2–5)102 K.
We have arrived now at estimation of Z T at T = 300 K for nanocarbon films with

a desirable ratio of sp2/sp3 regions. At achievable values σ = 300 × 102 S m−1; k =
2 × 102 W m −1 K−1 [16] we come to Z T · ∼= 0.6–30.

Hence the thermoelectric figure of merit in the case of a ballistic phonon contribution to
the phonon drag should be a hundred times that for chaotic phonons and 500 higher than that
in the case of electron diffusion.

Thus, the dimensionless thermoelectric power characterizing ballistic phonon drag of
electrons turns out to be 102 times higher than that for the random phonon drag of electrons,
and 5 × 102 times higher than that expected for diffusion processes.

The thermoelectric figure of merit should be also larger correspondingly.
Unfortunately, experimental data on the Seebeck coefficient in nanocarbon structures are

unknown to the authors; we can, however, assume that it is the drag of electrons by ballistic
phonons that is responsible for the increase of the coefficient with decreasing thin layer
thickness detected in [3, 4].

6. Analysis of the ballistic phonon drag of electrons

The above estimate of the probability of ballistic phonon absorption by electrons, equation (16),
was obtained by solving the transport equation in the relaxation time approximation, i.e.,
assuming that before recovering their equilibrium state, electrons undergo many interactions
with phonons.

This calculation is similar to the one developed for the low temperature domain and
macroscopic samples. At low temperatures, the phonon mean free path is large and comparable
to the size of macroscopic objects. In the present case of high temperatures, the phonon mean
free path is small, but it still is larger than or of the order of the size of an sp2 region in a
nanostructure.

The magnitude of the probability W determines the size x within which phonons propagate
ballistically despite scattering from electrons:

W
x

c
< 1. (23)

If x > d , it is by the ballistic phonon drag, τ = τbal = W−1, that the relaxation time in the
sp2 region, τ = W−1, which determines electron displacement and, hence, the thermoelectric
power, will be governed. If, however, x < d , the sp2 region should be divided into two parts.
In one of them, of size x , phonons may be considered ballistic, while in the other, d − x in size,
phonons move in random directions.

Let us analyse the expression for the probability of ballistic phonon absorption by an
electron, equation (16). One may conveniently rearrange this expression to isolate the
dimensional factor c/d and a dimensionless one that relates to the collision process

E = 4πa3

d3

(
h̄2

2ma2

)2 d2

Mc2

2πc

h̄

d2

c2

(
kBT

2π h̄c

)3

�(3)ζ(3). (24)

9



J. Phys.: Condens. Matter 19 (2007) 266210 E D Eidelman and A Ya Vul’

Dropping inessential numerical factors, equation (24) can be recast in the form of four
dimensionless parameters having a straightforward physical meaning:

E = V 3
1 V 2

2 V3V4 (25)

where the first dimensionless parameter

V1 = kBT

2π h̄c/a
≈ 0.1–1; (26)

is the ratio of the imparted heat to the phonon energy. The quantity V 3
1 is the number of phonons

incident on the electron.
The second parameter

V2 = h̄2

2ma2

1

Mc2
≈ kee2

a

1

Mc2
≈ 1–0.1 (27)

is the ratio of the electron vibrational energy to the energy of atomic vibrations in the crystal
cell. The quantity V2 is the matrix element of electron interaction with a phonon, and V 2

2 is the
squared matrix element entering the interaction probability.

The third parameter (anharmonicity factor)

V3 = Mc2

h̄c/a
≈ 40–400 (28)

is the ratio of atom (cell) vibration energy to phonon energy. Finally, the fourth parameter

V4 = x

a
≈ d

a
≈ 1–10 (29)

is the relative size of the region phonons cross ballistically.
The relation of the dimensionless thermoelectric power to the rate of ballistic phonon

absorption by electrons is physically obvious. The thermoelectric coefficient (22) is defined
by the number of electrons which become displaced as a result of ballistic phonon absorption,
and the rate of ballistic phonon absorption by electrons is characterized by the probability
given by equation (16). Indeed, both these quantities are proportional to V 3

1 , i.e., they scale
as T 3. This pattern of behaviour is characteristic also of low temperature thermal conductivity
(see chapter 6, section 7 in [14]), as well as of the acoustoelectric coefficient. It should be
emphasized that the thermoelectric power in the case of electron drag by randomly propagating
phonons scales as T −1 [5, 17].

7. Conclusion

To sum up, we have shown that the probability of electron collisions with quasi-ballistic
phonons in sp2 hybridized carbon nanostructures is not small, and that it is the quasi-
ballistic phonon drag of electrons with the distribution coinciding with that of black body
radiation that provides the major contribution to thermoelectric power. The high efficiency
of electron interaction with such phonons is accounted for by the better matching of the
electron and phonon energy distributions, which distinguishes our case from the acoustoelectric
effect [18–20]. Note that [20] proposes a general expression relating the drag-based
thermoelectric power to the acoustoelectric effect for any phonon distribution. The above
calculations combined with the formalism developed in [20] could permit computation of the
acoustoelectric effect in carbon nanostructures. Experimental determination of this coefficient
by the technique employed in [21] appears of interest.

As follows from calculations, the probability of electron interaction with quasi-ballistic
phonons is proportional to the size of the region in which phonons propagate without collisions
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with one another, thus making it possible to extend the results and methods of calculation
developed for ballistic phonons at low temperatures to the high temperature domain in the case
of nanostructures.

We have analysed the influence of various factors on the process of ballistic phonon drag
of electrons. It turned out that the main factors are here, first, the relative size of the region of
ballistic phonon propagation and, second, the ratio of lattice vibration to phonon energy, i.e.,
the anharmonicity factor.

We have used in the calculations the theoretical phonon mean free path l < 10 nm (1).
Experiment revealed substantially larger mean free paths. Indeed, the experimental mean free
path of ballistic phonons turned out to be larger, 2.5 mm, at a temperature T = 1 K. In our
case, for the estimates to be valid, the mean free path can be less than 4 nm. We used in
the estimates 4 nm. The probability of absorption, equation (16), scales with temperature as
T 3d2. This means that the mean free path has already become about 4 nm at T ∼= 500 K. To
estimate Z , only the probability of absorption W is needed. Thus, the drag effect in the above
estimates is underestimated. We want to stress once more that all our estimates were obtained
with an underestimated drag probability (drag effect) and, accordingly, with underestimated
parameter Z . The predicted effect of ballistic phonon drag of electrons and, accordingly, the
corresponding increase of the Z parameter compared with known mechanisms are real.

The thermoelectric power and thermoelectric figure of merit under conditions of ballistic
transport were found to be substantially higher than those in the cases of the drag by
thermalized phonons and that of electron diffusion. The temperature dependence of the
contribution of the ballistic phonon drag of electrons to the thermoelectric power factor
scales as temperature cubed, which differs radically from the well-known behaviour at high
temperatures in macrostructures while coinciding with the temperature dependences observed
at low temperatures [8] and characterizing the acoustoelectric effect [18, 20].

Taking into account the ballistic phonon contribution to phonon drag can be essential in
other phenomena occurring in nanocarbon structures as well; in particular, it allowed us to
suggest a model for the explanation of the anomalous high field electron emission in these
structures [22].
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